产品的数据挖掘与分析
来源:引流技巧
编辑:引流技巧
时间:2025-09-03

产品运营经常会涉及到数据分析,从某种意义上而言,也是一个以数据价值为结果导向的过程。
1、
很多关于数据挖掘的帖子和文章都在强调工具、算法和架构等,但其实这些都不是数据挖掘的核心,数据挖掘的最重要的环节如下:
数据来源:通过无论是公开的数据还是合作方式、第三方的方式获得数据;
获取标签:对标的物无论是用户、商品、文章分析,以获取足够定义这些标的物的标签,并对标签进行指标化和定义权重,通过这些标签对;
定义特征:通过标的物的个体画像以及标的物间的关系定义个体和整体的特征;
评估模型:通过定义的特征定义并评估一系列数据模型;
应用模型:模型数据可视化、基于有效模型数据价值应用。
2、
为什么把数据挖掘和数据分析放在一起说,是因为数据挖掘本身是一个数据应用化的过程,而应用化的过程某种意义上就是一个数据分析的过程,而这个数据分析可以是人为定义的、AI人工智能辅助的等等。
所以,我们可以暂且这样定数据挖掘和数据分析的关系:通过不断优化的数据分析方法,并利用数据挖掘才能够得出数据应用价值的最大化的结果。
数据挖掘是数据价值结果导向的过程集合,而数据应用价值到底有多大?者就是通过数据分析来评估的,其来自于数据分析的过程以及得出的结论。
3、
数据挖掘并不局限。就狭义而言,它就是一个在海量数据中挖掘数据价值的过程;而就广义而言,只要是有数据来源的,并能够通过数据分析方法论得到一数据价值结果为导向的过程,都可以称作数据挖掘。
4、
产品运营经常会涉及到数据分析,从某种意义上而言,也是一个以数据价值为结果导向的过程:
数据来源:产品运营过程中的产生和收集的一系列数据,如图:




相关文章:
相关推荐:
栏目分类

最新文章

热门文章


