搜狐:新闻推荐系统的CTR预估模型
来源:引流技巧
编辑:引流技巧
时间:2025-09-03

在推荐系统的排序环节中,我们经常使用CTR(Click-Through Rate)预估的方式来构建排序模型。在业界的实际应用上,如何通过大规模数据提取出有效特征对用户行为建模、泛化一直是研究人员的工作方向,由于在推荐系统的实际应用中,数据通常非常稀疏,如何从大规模的稀疏特征中提取出有效的泛化特征是CTR预估模型的一个重大挑战。本文我们首先介绍了CTR预估模型的演变历史,并介绍如何使用DNN在推荐系统的排序情景进行CTR预估,通过特殊的网络结构得到高效的泛化特征提高模型的预测能力
DNN在推荐系统中的应用2.1 点击率预估模型
在新闻推荐系统中,想得到用户最可能点击的新闻,给定某用户及新闻的集合,通过提取特征我们可以得到三种特征:
我们需要计算出用户对待预估新闻的点击率,通过对预估点击率的降序排序得出用户最可能点击的前K个新闻。
最开始做点击率预估的模型为LR(Logistic Regression),将上述特征代入LR模型可以得到一个简单的点击率预估模型。然而,在推荐情景中,用户的行为是稀疏的,即一个用户能看到的新闻是有限的,如何从用户有限的浏览中推测出用户可能喜欢的新闻,就是推荐工作的重点,在这里使用LR如果只是简单的对上述特征进行建模,是无法得到特别好的效果的,原因是LR模型本身无法对特征进行泛化,它只能对某特征直接计算其相应的权重


相关文章:
相关推荐:
栏目分类

最新文章

热门文章


